- Anzeigen -


Sie sind hier: Home » Fachbeiträge » Grundlagen

Code Signing-Attacken verhindern


Neue Anforderungen für Code-Signing-Zertifikate treten in Kraft
Was heißt das für Entwickler?

- Anzeigen -





Autor: GMO GlobalSign

Das Certification Authority Security Council (CASC) hat seine neuen Minimum Requirements für öffentlich vertrauenswürdige Code- Signing-Zertifikate offiziell bekannt gegeben. Zum ersten Mal sind Zertifizierungsstellen (CAs) damit an eine Reihe von standardisierten Ausstellungs- und Managementrichtlinien gebunden, die speziell für das Code Signing entwickelt wurden. Die Requirements gehen ausführlich auf CA-Richtlinien ein und behandeln Themen wie Zertifikatinhalte, Widerruf- und Statusprüfungen, Verifizierungspraktiken und vieles mehr. Zertifizierungsstellen haben hinter den Kulissen schon recht eifrig daran gearbeitet das Anforderungsprofil umzusetzen.

Was aber heißt das für die Benutzer? Wir wollen einen Blick darauf werfen, welche Anforderungen die User betreffen, die überhaupt Zertifikate zum Signieren von Code benutzen.

Private Schlüssel müssen auf kryptografischer Hardware gespeichert werden
Gemäß CASC ist eine der Hauptursachen für Code Signing-Attacken ein kompromittierter Schlüssel. Das heißt, ein potenzieller Angreifer kann auf den privaten Schlüssel eines legitimen, "guten" Herausgebers zugreifen und verwendet den Schlüssel, um eine schädliche Datei zu signieren. Dadurch wirkt diese Datei vertrauenswürdig und die Chancen steigen, dass sie tatsächlich heruntergeladen wird. Die übliche Methode vor den Requirements war es, den Schlüssel lokal zu speichern. Speichert man ihn aber stattdessen auf einer sicheren kryptografischen Hardware, wie beispielsweise einem USB-Token oder einem Hardware Security Module (HSM), ist es sehr viel unwahrscheinlicher, dass der Schlüssel kompromittiert wird.

Zertifizierungsstellen wie GlobalSign empfehlen schon seit längerem einen stärkeren Schutz des privaten Schlüssels - im Übrigen eine Voraussetzung für das Ausstellen von Extended Validation (EV) Code-Signing-Zertifikaten, seit sie 2014 eingeführt wurden. Unter den neuen Richtlinien wird diese Forderung aber für alle Code-Signing-Zertifikate verbindlich. Insbesondere müssen alle privaten Schlüssel auf FIPS 140-2 Level 2 HSM, einer gleichwertigen On-Premise-Hardware oder in einem sicheren Cloud-basierten Signaturdienst gespeichert werden.

Standardisierte und strikte Identitätsverifizierung
Der andere Hauptgrund für Code-Signing-Attacken, so der CASC, ist, dass Zertifikate an potenzielle Angreifer ausgegeben werden. Die nutzen das Zertifikat dann zum Signieren von Viren oder Malware. Um das zu verhindern, umreißen die neuen Requirements spezielle Vorkehrungen, die Zertifizierungsstellen vor der Ausstellung treffen müssen.

Dazu gehören:
• >> eine strikte Identitätsverifizierung des Herausgebers, wie beispielsweise die rechtliche Identität, Adresse, Gründungsdaten und weitere mehr
• >> ein Abgleich mit Listen von verdächtigen oder bereits bekannten Malware-Herausgebern, -Produzenten und -Vertreibern
• >> die Pflege und der Abgleich einer internen Liste von Zertifikaten, die widerrufen wurden, weil sie zum Signieren von verdächtigen Code- und Zertifikatanforderungen verwendet wurden, und die zuvor von der CA zurückgewiesen wurden

Viele CAs nutzen bereits die meisten dieser Prozesse. Aber eine Standardisierung erschwert es einem böswilligen Herausgeber, sich nach einer CA mit schwächeren Prüfverfahren umzusehen, wenn er von einer anderen bereits abgelehnt wurde.

Melden von und Reagieren auf Zertifikatmissbrauch oder verdächtigen Code
Zu verhindern, dass solche Zertifikate überhaupt ausgestellt werden ist die eine Seite. Die Requirements legen aber zusätzlich fest, dass CAs ein "Certificate Problem Reporting" -System betreiben Hier können Dritte (z. B. Anti-Malware-Anbieter, vertrauenswürdige Parteien, Softwareanbieter) eine "vermutete Kompromittierung eines privaten Schlüssels, Zertifikatmissbrauch, Zertifikate, die zum Signieren von verdächtigem Code verwendet wurden, Takeover-Attacken oder andere Arten von möglichen Betrug, Kompromittierung, Missbrauch, unangemessenem Verhalten oder anderen Dingen im Zusammenhang mit Zertifikaten" melden.

Das hat auch für die CAs Folgen, denn sie müssen sich an sehr strenge Standards hinsichtlich der Reaktion auf solcherart gemeldete Probleme halten. Beispielsweise müssen sie innerhalb von 24 Stunden mit der Untersuchung beginnen und alle Vorfälle rund um die Uhr melden. Es gibt zudem strenge Richtlinien und einen Zeitrahmen hinsichtlich des Widerrufs, für den Fall, dass Malware oder eine andere Art von Missbrauch vermutet wird.

Die neuen Meldesysteme sorgen dafür, dass selbst dann, wenn ein böswilliger Herausgeber den Verifizierungsprozess übersteht, sein Zertifikat umgehend gemeldet, untersucht und widerrufen werden kann.

Alle CAs müssen Zeitstempel haben
Eine weitere Anforderung, die besonders für Entwickler von Interesse sein kann, ist, dass alle CAs jetzt eine RFC-3161-kompatible Timestamp Authority (TSA) betreiben müssen. Und sie muss für alle Code-Signing-Kunden verfügbar sein. So kann man jeder Signatur einen vertrauenswürdigen Zeitstempel zuordnen.

Der Hauptvorteil eines Zeitstempels liegt darin, dass die Signatur nicht abläuft, wenn das Zertifikat abläuft. Das würde normalerweise ohne den Zeitstempel passieren. Stattdessen können Signaturen für die Lebensdauer des Zeitstempelzertifikats gültig bleiben, laut den Requirements bis zu 135 Monaten. Es gibt aber noch ein Szenario, das von einer Zeitstempelung profitiert: Wenn ein Schlüssel kompromittiert wurde und das Zertifikat widerrufen wird. Wenn ein Schlüssel beispielsweise dazu verwendet wurde, legitimen Code zu signieren, dann aber kompromittiert und zum Signieren von bösartigem Code verwendet wurde, kann man das Widerrufsdatum zwischen die beiden Ereignisse legen. Auf diese Weise ist der legitime Code weiterhin vertrauenswürdig, der schädliche Code aber nicht.

Eine sicherere Zukunft für Code Signing
Die neuen Standards und Requirements tragen ganz entscheidend dazu bei Code- Signing-Angriffe zu reduzieren. Microsoft ist der erste Anbieter von Anwendungssoftware, der die Richtlinien übernimmt und am 1. Februar 2017 damit beginnt sie umzusetzen.
(GMO GlobalSign: ra)

eingetragen: 22.01.17
Home & Newsletterlauf: 08.02.17


GMO GlobalSign: Kontakt und Steckbrief

Der Informationsanbieter hat seinen Kontakt leider noch nicht freigeschaltet.


Meldungen: Grundlagen

  • Der primäre Anwendungsfall unserer Zeit

    Es scheint ein Widerspruch zu sein: Obwohl die meisten Unternehmen viele ihrer Anwendungen in die Cloud migrieren, erfreut sich das klassische Rechenzentrum nach wie vor großer Beliebtheit. Seit nun mehr als einem Jahrzehnt virtualisieren Unternehmen ihre Rechenzentren und führen Cloud-Technologien ein. Und sagten einige Experten vor gut zehn Jahren voraus, dass das Rechenzentrum der Zukunft vollständig in der Cloud betrieben würde, sehen wir heute, dass dies nicht eingetreten ist. Stattdessen führten Unternehmen Hybrid- und Multi-Cloud-Umgebungen ein, die ihnen die Wahl geben, ihren Anwendungen und Daten das ideale Zuhause zu geben.

  • Modulare Malware: Bösartige Multitalente

    Modulare Malware bietet Cyberkriminellen eine Architektur, die robuster, flexibler und gefährlicher ist als klassische dokumentenbasierte oder webbasierte Malware. Denn die Schadware beinhaltet verschiedene Nutzlasten und Funktionen und kann diese selektiv starten, je nach Ziel und Funktion des Angriffs. Mit dem Aufkommen von Botnetzen, die Befehle von Cyberkriminellen ausführen, und Malware, die für eine umfangreiche Verbreitung geschrieben wurde, ist Modularität zur neuen Norm geworden. Malware-Autoren organisieren sich zunehmend professionell und übernehmen und implementieren Praktiken der Softwareindustrie, einschließlich Qualitätssicherung und Tests, um den Erfolg von Angriffen zu optimieren. Als Reaktion auf die Anforderung, mehrere Fähigkeiten mit einer Malware-Datei zu erfüllen, hat sich modulare Malware zu einer funktionsreichen und flexiblen Angriffslösung für Cyberkriminelle entwickelt.

  • KI-Anwendungen missbraucht

    Malwarebytes veröffentlichte ihren Hintergrundbericht zum Einsatz Künstlicher Intelligenz (KI) innerhalb der Malware-Branche. In diesem Bericht wirft Malwarebytes dabei einen Blick zurück auf die Anfänge von KI, gibt einen Einblick in die Vorteile von KI und Machine Learning innerhalb der Cybersicherheitsbranche, definiert Einsatzgebiete mit Beispielen von KI bei Malware-Angriffen und gibt einen Ausblick, wozu bösartige Angriffe auf KI-Basis in Zukunft im Stande sind. Der komplette (englischsprachige) Hintergrundbericht ist unter diesem Link verfügbar. Als Gesellschaft nutzen wir künstliche Intelligenz bereits in einer Vielzahl von Branchen: Spracherkennung, Wortvervollständigung, Biometrie, maschinelle Lernplattformen. KI ist über den Hype hinaus und wir werden bald feststellen, dass sie mittlerweile weit verbreitet ist. Malwarebytes geht davon aus, dass es einen entscheidenden Zeitraum in der Entwicklung der künstlichen Intelligenz gibt, in dem diejenigen, die diese relativ neue Technologie in die Welt bringen, die Wahl haben, sie verantwortungsbewusst zu nutzen oder ihre Entwicklung einfach um jeden Preis zu beschleunigen. Es ist jetzt an der Zeit, darüber nachdenken, bevor es Cyberkriminelle tun werden.

  • ML: Die geknüpften Erwartungen sind hoch

    Die an Maschinelles Lernen (ML) geknüpften Erwartungen sind hoch, und das mit gutem Grund. Algorithmen, die auf maschinellem Lernen basieren, erlauben es uns beispielsweise enorme Mengen von Sicherheitsvorkommnissen auf Anomalien hin zu sichten. Also Abweichungen von einem als normal definierten Verhalten zu erkennen, die häufig Anzeichen für böswillige Aktivitäten sind. Die Ergebnisse dieses Sichtungsprozesses werden an einen Analysten übermittelt, der sie durchsieht und gründlich überprüft. Anschließend wird das System mit den Ergebnissen gefüttert um es weiter zu trainieren. Mit mehr und mehr in das System eingespeisten Daten entwickelt es sich sukzessive weiter: Es lernt ähnliche Sicherheitsvorkommnisse zu erkennen und letztendlich deren zugrunde liegende Charakteristika eines böswilligen Verhaltens.

  • Angriffsforensik: Post Mortem von Cyberattacken

    Wenn Cyberangriffe die Sicherheit von Endgeräten umgehen, kann es oft Monate dauern, bis Unternehmen die Schwachstelle entdecken. Unternehmen suchen deshalb nach Möglichkeiten, ihre Endgerätesicherheit zu modernisieren und ihre Fähigkeit zu verbessern, Bedrohungen schneller zu erkennen und in komplexen Infrastrukturen effektiver darauf zu reagieren. Um genutzte Sicherheitslücken und blinde Flecken im System zu erkennen, müssen sich Securityteams der Angriffsforensik bedienen, um genau herauszufinden, wie es zu Sicherheitsvorfällen kommen konnte. Sie ist ein Element zur Verbesserung der Endpoint Detection and Response (EDR). Weiß man dank der Angriffsforensik genau, wo die Sicherheitslücken sind und wie sie von Kriminellen ausgenutzt wurden, können Unternehmen Business Continuity besser gewährleisten, Malware schneller erkennen und Sicherheitslücken zukünftig schließen.