- Anzeigen -


Sie sind hier: Home » Fachbeiträge » Grundlagen

Code Signing-Attacken verhindern


Neue Anforderungen für Code-Signing-Zertifikate treten in Kraft
Was heißt das für Entwickler?

- Anzeigen -





Autor: GMO GlobalSign

Das Certification Authority Security Council (CASC) hat seine neuen Minimum Requirements für öffentlich vertrauenswürdige Code- Signing-Zertifikate offiziell bekannt gegeben. Zum ersten Mal sind Zertifizierungsstellen (CAs) damit an eine Reihe von standardisierten Ausstellungs- und Managementrichtlinien gebunden, die speziell für das Code Signing entwickelt wurden. Die Requirements gehen ausführlich auf CA-Richtlinien ein und behandeln Themen wie Zertifikatinhalte, Widerruf- und Statusprüfungen, Verifizierungspraktiken und vieles mehr. Zertifizierungsstellen haben hinter den Kulissen schon recht eifrig daran gearbeitet das Anforderungsprofil umzusetzen.

Was aber heißt das für die Benutzer? Wir wollen einen Blick darauf werfen, welche Anforderungen die User betreffen, die überhaupt Zertifikate zum Signieren von Code benutzen.

Private Schlüssel müssen auf kryptografischer Hardware gespeichert werden
Gemäß CASC ist eine der Hauptursachen für Code Signing-Attacken ein kompromittierter Schlüssel. Das heißt, ein potenzieller Angreifer kann auf den privaten Schlüssel eines legitimen, "guten" Herausgebers zugreifen und verwendet den Schlüssel, um eine schädliche Datei zu signieren. Dadurch wirkt diese Datei vertrauenswürdig und die Chancen steigen, dass sie tatsächlich heruntergeladen wird. Die übliche Methode vor den Requirements war es, den Schlüssel lokal zu speichern. Speichert man ihn aber stattdessen auf einer sicheren kryptografischen Hardware, wie beispielsweise einem USB-Token oder einem Hardware Security Module (HSM), ist es sehr viel unwahrscheinlicher, dass der Schlüssel kompromittiert wird.

Zertifizierungsstellen wie GlobalSign empfehlen schon seit längerem einen stärkeren Schutz des privaten Schlüssels - im Übrigen eine Voraussetzung für das Ausstellen von Extended Validation (EV) Code-Signing-Zertifikaten, seit sie 2014 eingeführt wurden. Unter den neuen Richtlinien wird diese Forderung aber für alle Code-Signing-Zertifikate verbindlich. Insbesondere müssen alle privaten Schlüssel auf FIPS 140-2 Level 2 HSM, einer gleichwertigen On-Premise-Hardware oder in einem sicheren Cloud-basierten Signaturdienst gespeichert werden.

Standardisierte und strikte Identitätsverifizierung
Der andere Hauptgrund für Code-Signing-Attacken, so der CASC, ist, dass Zertifikate an potenzielle Angreifer ausgegeben werden. Die nutzen das Zertifikat dann zum Signieren von Viren oder Malware. Um das zu verhindern, umreißen die neuen Requirements spezielle Vorkehrungen, die Zertifizierungsstellen vor der Ausstellung treffen müssen.

Dazu gehören:
• >> eine strikte Identitätsverifizierung des Herausgebers, wie beispielsweise die rechtliche Identität, Adresse, Gründungsdaten und weitere mehr
• >> ein Abgleich mit Listen von verdächtigen oder bereits bekannten Malware-Herausgebern, -Produzenten und -Vertreibern
• >> die Pflege und der Abgleich einer internen Liste von Zertifikaten, die widerrufen wurden, weil sie zum Signieren von verdächtigen Code- und Zertifikatanforderungen verwendet wurden, und die zuvor von der CA zurückgewiesen wurden

Viele CAs nutzen bereits die meisten dieser Prozesse. Aber eine Standardisierung erschwert es einem böswilligen Herausgeber, sich nach einer CA mit schwächeren Prüfverfahren umzusehen, wenn er von einer anderen bereits abgelehnt wurde.

Melden von und Reagieren auf Zertifikatmissbrauch oder verdächtigen Code
Zu verhindern, dass solche Zertifikate überhaupt ausgestellt werden ist die eine Seite. Die Requirements legen aber zusätzlich fest, dass CAs ein "Certificate Problem Reporting" -System betreiben Hier können Dritte (z. B. Anti-Malware-Anbieter, vertrauenswürdige Parteien, Softwareanbieter) eine "vermutete Kompromittierung eines privaten Schlüssels, Zertifikatmissbrauch, Zertifikate, die zum Signieren von verdächtigem Code verwendet wurden, Takeover-Attacken oder andere Arten von möglichen Betrug, Kompromittierung, Missbrauch, unangemessenem Verhalten oder anderen Dingen im Zusammenhang mit Zertifikaten" melden.

Das hat auch für die CAs Folgen, denn sie müssen sich an sehr strenge Standards hinsichtlich der Reaktion auf solcherart gemeldete Probleme halten. Beispielsweise müssen sie innerhalb von 24 Stunden mit der Untersuchung beginnen und alle Vorfälle rund um die Uhr melden. Es gibt zudem strenge Richtlinien und einen Zeitrahmen hinsichtlich des Widerrufs, für den Fall, dass Malware oder eine andere Art von Missbrauch vermutet wird.

Die neuen Meldesysteme sorgen dafür, dass selbst dann, wenn ein böswilliger Herausgeber den Verifizierungsprozess übersteht, sein Zertifikat umgehend gemeldet, untersucht und widerrufen werden kann.

Alle CAs müssen Zeitstempel haben
Eine weitere Anforderung, die besonders für Entwickler von Interesse sein kann, ist, dass alle CAs jetzt eine RFC-3161-kompatible Timestamp Authority (TSA) betreiben müssen. Und sie muss für alle Code-Signing-Kunden verfügbar sein. So kann man jeder Signatur einen vertrauenswürdigen Zeitstempel zuordnen.

Der Hauptvorteil eines Zeitstempels liegt darin, dass die Signatur nicht abläuft, wenn das Zertifikat abläuft. Das würde normalerweise ohne den Zeitstempel passieren. Stattdessen können Signaturen für die Lebensdauer des Zeitstempelzertifikats gültig bleiben, laut den Requirements bis zu 135 Monaten. Es gibt aber noch ein Szenario, das von einer Zeitstempelung profitiert: Wenn ein Schlüssel kompromittiert wurde und das Zertifikat widerrufen wird. Wenn ein Schlüssel beispielsweise dazu verwendet wurde, legitimen Code zu signieren, dann aber kompromittiert und zum Signieren von bösartigem Code verwendet wurde, kann man das Widerrufsdatum zwischen die beiden Ereignisse legen. Auf diese Weise ist der legitime Code weiterhin vertrauenswürdig, der schädliche Code aber nicht.

Eine sicherere Zukunft für Code Signing
Die neuen Standards und Requirements tragen ganz entscheidend dazu bei Code- Signing-Angriffe zu reduzieren. Microsoft ist der erste Anbieter von Anwendungssoftware, der die Richtlinien übernimmt und am 1. Februar 2017 damit beginnt sie umzusetzen.
(GMO GlobalSign: ra)

eingetragen: 22.01.17
Home & Newsletterlauf: 08.02.17


GMO GlobalSign: Kontakt und Steckbrief

Der Informationsanbieter hat seinen Kontakt leider noch nicht freigeschaltet.

- Anzeigen -





Kostenloser IT SecCity-Newsletter
Ihr IT SecCity-Newsletter hier >>>>>>

- Anzeigen -


Meldungen: Grundlagen

  • PKI ist im 21. Jahrhundert angekommen

    Um ein IoT-Ökosystem sicher aufzubauen und zu entwickeln, braucht man zwingend Tools und Architekturen, um IoT-Geräte zu identifizieren, zu kontrollieren und zu verwalten. Dieser Prozess beginnt mit dem Festlegen einer starken Identität für jedes IoT-Gerät. Der folgende Beitrag beschäftigt sich mit einigen der Möglichkeiten, wie man die Authentizität von IoT-Geräten verifizieren kann, bevor man sie integriert.

  • Tor-Browser, um IP-Adressen zu verschleiern

    Trotz ausgereifter Sicherheitstechnologien bleiben Anwender für Unternehmen eine empfindliche Schwachstelle, insbesondere deshalb, weil Cyberkriminelle ihre Social Engineering-Angriffe immer weiter verfeinern. Vor allem Phishing zählt zu den Angriffsvektoren, die Unternehmen gegenwärtig Kopfschmerzen bereiten. So werden E-Mails im Namen von Payment-Services, Shopanbietern oder E-Mailservice-Hosts von den kriminellen Hintermännern täuschend echt nachgeahmt, mit dem Ziel, durch das Abfischen von Logindaten weitere sensible, persönliche Daten zu erbeuten. Doch wie sehen die Konsequenzen aus, wenn Nutzerdaten von Mitarbeitern in die falschen Hände geraten und welche Auswirkungen hätte dies auf das Unternehmen? Das Forschungsteam von Bitglass hat versucht, mithilfe eines Experiments unter dem Namen "Cumulus" den Verbreitungswegen illegal erbeuteter Daten auf die Spur zu kommen.

  • PKI ist im 21. Jahrhundert angekommen

    Um ein IoT-Ökosystem sicher aufzubauen und zu entwickeln, braucht man zwingend Tools und Architekturen, um IoT-Geräte zu identifizieren, zu kontrollieren und zu verwalten. Dieser Prozess beginnt mit dem Festlegen einer starken Identität für jedes IoT-Gerät. Der folgende Beitrag beschäftigt sich mit einigen der Möglichkeiten, wie man die Authentizität von IoT-Geräten verifizieren kann, bevor man sie integriert. Die IoT-Entwicklung durchdringt mittlerweile alle Facetten unseres Lebens. Entsprechend rasant ist das Innovationstempo in diesem Bereich. Es existieren viele Anwendungen, die klug und ausgereift sind, aber leider auch solche, die das genaue Gegenteil davon sind. Dessen ungeachtet sind die weitaus meisten Anwendungen sehr wirkungsvoll etwa in der Landwirtschaft oder im Gesundheitswesen. Das IoT ist also nicht mehr weg zu denken. Trotzdem mutet die Entwicklung bisweilen so an, als versuche jemand zu rennen bevor er noch überhaupt laufen gelernt hat. Übersetzt heißt das, IoT-Entwickler vernachlässigen eine Kernkomponente unserer vernetzten Welt, die Sicherheit.

  • Mustererkennung umgehen

    Ob Viren, Würmer, Bots, Trojaner oder Keylogger, viele der gängigen Malware-Formen bergen nicht nur ein hohes Schadenspotential, sondern sind auch überaus wandlungsfähig. Ein berüchtigtes Beispiel ist die CryptoWall-Ransomware, mit der Cyberkriminelle nach Schätzung des FBI mehr als 18 Millionen Dollar erbeutet haben. CryptoWall ist ein polymorpher Ransomware-Stamm, der in bekannter Manier Daten auf dem Computer des Opfers verschlüsselt und anschließend Lösegeld erpresst. Der in CryptoWall verwendete polymorphe Builder entwickelt dabei für jedes Angriffsziel eine im Wesentlichen neue Code-Variante, um der Entdeckung durch traditionelle Sicherheitslösungen zu entgehen. Polymorphe Malware ändert ständig ihre identifizierbaren Merkmale, beispielsweise durch Veränderung von Dateinamen und -typen, Verschlüsselung oder Komprimierung. Einige polymorphe Taktiken existieren bereits seit den 1990ern, doch in den letzten zehn Jahren hat sich eine neue Welle aggressiver polymorpher Malware entwickelt.

  • Unterschätztes Risiko Insider-Angriff

    Beim Stichwort Cyber-Bedrohung denkt man häufig an großangelegte Malware-Angriffe wie Ransomware, mit denen Kriminelle versuchen, das Firmennetzwerk zu kompromittieren. Unterschätzt wird jedoch oft eine Gefahr, die bereits im Firmengebäude sitzt: Die Insider-Bedrohung. Insider - seien es unachtsame Angestellte oder böswillige Mitarbeiter, die aus finanziellen oder persönlichen Motiven Daten stehlen oder gar löschen - sind ein enormes Risiko für die Datensicherheit in Unternehmen. Oft haben Angestellte, externe Auftragnehmer und andere Dritte legitimen Zugriff auf sensible Daten, um effektiv und flexibel arbeiten zu können. Dies stellt eine Herausforderung für Sicherheitsteams dar, denn es ist wesentlich schwieriger, Bedrohungen zu erkennen, wenn der betreffende Akteur gültigen Zugriff auf Unternehmensdaten hat. Mit entsprechenden Richtlinien und Technologien kann die Gefahr eines internen Datenverlustes oder -diebstahls jedoch erheblich reduziert werden.